Category Archives: Watershed Moments

Community-Based Monitoring Results Give Meaning to Our Story: Water Monitoring Results Story Map June 2nd, 2017

Posted in: Watershed Moments

Click here to view our story map

Citizen scientists around Manitoba are working together with Lake Winnipeg Foundation (LWF) to tell an important story about the health of our watershed. Manitoba’s community-based monitoring network is made up of volunteers collaborating on a grassroots initiative to better understand phosphorus loading in Lake Winnipeg. Local volunteers, school groups, and conservation districts are using their citizen scientist training to collect water quality data at sample sites throughout the Red River watershed. The goal of this project is to measure phosphorus concentrations and water flow data to identify where nutrients are coming from and how much phosphorus is leaving our watershed for Lake Winnipeg.

The Seine-Rat River Conservation District (SRRCD) partnered with LWF in 2016 to conduct regular water quality monitoring at six sample sites in the Seine River watershed. The results of this pilot-study inform how human activity affects our watershed and what we can do to better improve our programs for the benefit of our local environment. An interactive story map produced by the SRRCD and LWF gives meaning to the water quality data collected by volunteer citizen scientists in Manitoba.

A story map is a unique tool for viewing spatial areas using text, photos, and engaging graphics. Story maps are ideal for presenting spatial data in a non-technical way. The results of the 2016 LWF community-based water quality monitoring in the Seine River watershed show that a wide range of phosphorus concentrations vary between sub-watersheds. The story map shows that the amount of phosphorus leaving our watershed for Lake Winnipeg, called the export coefficient, is higher in areas with greater human activity. This narrative, however, is one part of a much bigger story. Phosphorus movement is also affected by natural functions, such as vegetation and soil type. That’s because different plant species and soil types store and release phosphorus in different ways. This means that the export coefficient varies from year to year in response to local environmental conditions, such as overland flooding, soil type, vegetation, and human activity. The story map produced by SRRCD and LWF tells the story of how human and natural interactions function within our watershed and where our phosphorus hotspots are located. We look forward to providing you with more detailed information about water results from each of our watersheds. Stayed tuned in the coming months for water quality testing results conducted in-house by the SRRCD.

You can engage with this narrative by interacting with our story map by clicking here, or by visiting our website at www.srrcd.ca. This story map can be viewed by scrolling through the text; zooming in and out of the maps; and by clicking on map features for more information about sample sites and water quality results.

Our head office and phone number has changed. We can be reached at:

We are always looking for volunteer citizen scientists to participate in community-based monitoring as we expand this program throughout our whole district. Contact the SRRCD at info@srrcd.ca for more information about becoming a part of our story!

Seine-Rat River Conservation District

Head Office

154 Friesen Avenue, Steinbach, MB, R5G 0T5

(204) 326-1030

 

Frog Pond a Ribbeting Success May 16th, 2017

Posted in: Watershed Moments

Each year, eager frog lovers seek out the most ambitious amphibians worthy of competing at the St-Pierre Frog Follies National Frog Jumping Championship. This popular event involves safely catching and releasing frogs from the local area. Contest participants register their chosen contenders in the frog jumping tournament to champion the frog with the furthest hop!

 

The Frog Follies annual community festival in the Village of St-Pierre-Jolys has grown leaps and bounds since it was first inaugurated in 1970 by Her Royal Highness, Queen Elizabeth II and Prince Charles. This unique festival celebrating francophone heritage inspired the development of a brand new naturalized amphibian habitat at Parc Carillon community park.

 

In 2016, the Seine-Rat River Conservation District (SRRCD) entered into a cost-share partnership with the Parc Carillon Committee to transform the existing one acre pond into a natural wetland ecosystem and frog spawning habitat. Soil removed from the pond excavation was used to create landscaped mounds as observation areas. They provide suitable frog habitat for protective cover during the day, as well as hibernation habitat during cold winter months.

 

Native plant species in the wetland environment are being planted to contribute to greater biodiversity in the local environment, as well to provide natural habitat to a variety of adult frog species. Native plants are naturally adapted to our climate and environmental conditions. This means that their root systems penetrate deep into the ground to improve water infiltration. The SRRCD planted a variety of native plant species in 2016 and will complete the naturalization of the pond in 2017.

 

The Parc Carillon Frog Pond also functions as an urban storm water detention that utilizes the natural ecological functions of wetlands to retain and slow high water flows, reduce runoff in urban and semi-urban areas, and purify water quality with native plant species. Naturalized urban water detentions can be incorporated into aesthetically pleasing urban design features with naturally wild or manicured appearances for sustainable environmental development and integrated watershed planning and management.

 

“This project will be a great addition to Parc Carillon – one that will particularly interest classrooms,” said Raymond Maynard, Parc Carillon Committee President. “Interpretive signs will not only help describe the project, they will also point to the similarities between the pond and St-Pierre-Jolys’ lagoon expansion, a first of its kind using ongoing phytoremediation [plant-based remediation] as part of the treatment process.”

 

The success of the Parc Carillon Frog Pond gives meaning to the value of building strong partnerships at the local level. The SRRCD and Village of St-Pierre-Jolys cost-shared the project for $10,000 each. The SRRCD took the lead on the project with design support provided by Native Plant Solutions.

 

The Parc Carillon Frog Pond is an innovative wetland ecosystem and viable model for urban storm water management. This unique amphibian habitat is intrinsic to the community and home to the next generation of frog jumping champions.

 

 

 

 

Urban Surface Water Management Solutions April 28th, 2017

Posted in: Watershed Moments

Surging surface water runoff and ice-plugged culverts resulting in localized urban flooding frustrated local governments and residents over this year’s spring melt. Water flowing over the concrete landscape of the urban environment also inundated local drainage networks and contributed to rising water levels in response to this year’s unusual rapid melting and freezing temperatures. Heavy equipment urgently worked to clear ice from culverts and ditches as water back flooded over roads and streets of the impervious urban landscape.

The concrete sea of the urban landscape is a vast impermeable surface contributing to massive flows of water runoff. Water that is unable to soak into the ground will quickly flow over asphalt parking lots, roads, rooftops, driveways, sidewalks, and residential streets into the local drainage network and low-lying areas. The amount of impervious surface within a watershed determines how great the change in runoff will be. Surface water runoff will double in areas with 10-20% impervious surface cover and triple in areas with 30-50% impervious surface cover. The majority of all surface water will result in runoff in urban areas with 75-100% impervious surface cover. This means that the process of urbanization dramatically increases surface water runoff because water is prevented from soaking into the soil.

The increasing frequency and severity of short-duration, high precipitation events are also challenging the way we think about sustainable urban surface water management strategies. Today, we are seeing more severe precipitation events in the amount of rain that falls in a storm – even though annual precipitation events are staying the same. This means that multi-day storms are increasing in frequency and extreme precipitation events are becoming more severe and damaging.

The conventional approach to urban surface water management has been to direct runoff into the urban drainage network. While this approach has been successful at removing water from roads and streams, it has contributed to greater stream bank erosion and sediment transport. Urban streams have subsequently been channelized with concrete to push water through the system more efficiently, resulting in increased downstream flooding in the lowland portions of the watershed. The shift away from conventional urban surface water management practices to more innovative and sustainable approaches are essential for mitigating flood risk and building more resilient communities.

Permeable Paving

Permeable paving is a broad term used to describe a diverse range of pavement technologies that allow water to seep through the surface material into a base layer for on-site water infiltration and filtration. Porous paving allows water to move through the surface material while permeable paving directs water around impervious brick pavers and into aggregate material in the joints between pavers.

These innovative paving methods can be utilized for roads, paths, driveways, parking lots, sidewalks, and other surfaces that are subject to light vehicular traffic. They are becoming increasingly popular for reducing runoff in urban centres because they maintain the functionality of a stable, load-bearing surface. Permeable paving systems utilize a wide variety of technologies for increasing soil infiltration capacity, including pervious concrete; porous asphalt; plastic grids; permeable interlocking concrete pavers; and resin bound paving made of recycled materials, such as glass, plastic, and rubber. Permeable paving is an effective strategy for low impact development at the neighbourhood scale. This strategy may be incorporated with innovations at the property scale to further enhance the utility of sustainable surface water management initiatives in urban areas.

Rain Gardens and Bioswales

Rain gardens and bioswales are vegetated with native plant species and are designed to capture and store surface water runoff from impervious surfaces. A rain garden is a bowl-shaped perennial garden planted near drain spouts and sump pump outlets to capture runoff from roofs and low-lying areas. Bioswales are linear systems designed to manage greater volumes of runoff from parking lots or roadways. The size of a rain garden or bioswale is designed according to the impervious surface area where water will be directed into the system. The larger the impervious surface area – the bigger the size of rain garden or bioswale.

Rain garden and bioswale systems provide important environmental benefits at the property scale. They improve water quality as surface water filters into the ground. Nutrients in the water are then taken up by native plant species vegetated in the system. These naturalized surface water management systems also create habitat for birds, bees, butterflies, and other wildlife; they reduce downstream flooding; and beautify residential neighbourhoods.

The Seine-Rat River Conservation District can help you design and create your own rain garden project. We provide funding up to $500 for individual projects, or 50% up to $5,000 for projects located in public spaces. We would be pleased to present on our expanded urban rain garden program at your next community organization meeting.

Naturalized Storm Water Retentions

Naturalized urban storm water retentions are aesthetically pleasing urban design features, which utilize the ecological functions of wetlands to slow high water flows; reduce surface water runoff from urban and semi-urban areas; and mitigate the effects of downstream flooding. Naturalized wetlands improve water quality as they are vegetated with water loving native plant species. Native plant species contribute to a greater biodiversity in the local area, as well as provide natural habitat to a variety of waterfowl and amphibian species. The native plant species of naturalized systems also provide goose deterrence and management by limiting goose access from the water to grazing areas. Native plant root systems penetrate deep into the ground and clean the water as they absorb nutrients, degrade pesticides, retain sediments, and reduce pathogens as water infiltrates back into the soil for groundwater recharge.

Naturalized urban storm water retentions are a cost-effective alternative to conventional retentions because less soil is removed from a site; rock or soil does not need to be imported to a site; construction time is reduced; basin construction can occur during slower times of the year; maintenance of surrounding native grass uplands is a fraction of the cost of maintaining sod; and there is no maintenance required to remove or manage unwanted algal blooms or submersed vegetation. Conventional ponds require long-term algae management because they are susceptible to algal blooms as nutrients slowly build up in the system. Naturalized storm water retentions mitigate flooding risk in urban areas by utilizing the natural ecological functions of wetlands to reduce peak waters flows for sustainable surface water management in urban areas.

Changes in land use and climate show that conventional urban surface water management strategies must be adapted at the property, neighbourhood, and watershed scale in order to mitigate flooding risk resulting from population growth and development. Innovative next-generation technologies and methods, like permeable surfaces, rain gardens, and naturalized storm water retentions are intrinsic to the sustainability of urban surface water management strategies.

Visit our website at srrcd.ca for more information about sustainable urban surface water management solutions, including permeable paving, naturalized retentions, and rain gardens.

Frog Pond a Ribbeting Success March 14th, 2017

Posted in: Watershed Moments

Each year, eager frog lovers seek out the most ambitious amphibians worthy of competing at the St-Pierre Frog Follies National Frog Jumping Championship. This popular event involves safely catching and releasing frogs from the local area. Contest participants register their chosen contenders in the frog jumping tournament to champion the frog with the furthest hop!

 

The Frog Follies annual community festival in the Village of St-Pierre-Jolys has grown leaps and bounds since it was first inaugurated in 1970 by Her Royal Highness, Queen Elizabeth II and Prince Charles. This unique festival celebrating francophone heritage inspired the development of a brand new naturalized amphibian habitat at Parc Carillon community park.

 

In 2016, the Seine-Rat River Conservation District (SRRCD) entered into a cost-share partnership with the Parc Carillon Committee to transform the existing one acre pond into a natural wetland ecosystem and frog spawning habitat. Soil removed from the pond excavation was used to create landscaped mounds as observation areas. They provide suitable frog habitat for protective cover during the day, as well as hibernation habitat during cold winter months.

 

Native plant species in the wetland environment are being planted to contribute to greater biodiversity in the local environment, as well to provide natural habitat to a variety of adult frog species. Native plants are naturally adapted to our climate and environmental conditions. This means that their root systems penetrate deep into the ground to improve water infiltration. The SRRCD planted a variety of native plant species in 2016 and will complete the naturalization of the pond in 2017.

 

The Parc Carillon Frog Pond also functions as an urban storm water detention that utilizes the natural ecological functions of wetlands to retain and slow high water flows, reduce runoff in urban and semi-urban areas, and purify water quality with native plant species. Naturalized urban water detentions can be incorporated into aesthetically pleasing urban design features with naturally wild or manicured appearances for sustainable environmental development and integrated watershed planning and management.

 

“This project will be a great addition to Parc Carillon – one that will particularly interest classrooms,” said Raymond Maynard, Parc Carillon Committee President. “Interpretive signs will not only help describe the project, they will also point to the similarities between the pond and St-Pierre-Jolys’ lagoon expansion, a first of its kind using ongoing phytoremediation [plant-based remediation] as part of the treatment process.”

 

The success of the Parc Carillon Frog Pond gives meaning to the value of building strong partnerships at the local level. The SRRCD and Village of St-Pierre-Jolys cost-shared the project for $10,000 each. The SRRCD took the lead on the project with design support provided by Native Plant Solutions.

 

The Parc Carillon Frog Pond is an innovative wetland ecosystem and viable model for urban storm water management. This unique amphibian habitat is intrinsic to the community and home to the next generation of frog jumping champions.